TEKNOLOGI DALAM PEMASANGAN IMPLAN GIGI DENGAN HYDROXYAPATITE DAN MATERIAL
DOI:
https://doi.org/10.51878/science.v5i2.6827Keywords:
Implan gigi, Hidroksiapatit, Nano, KorosiAbstract
This research is motivated by the crucial role of dental implants as a rehabilitation solution for tooth loss, yet they still face challenges related to bone integration, material durability, and procedure optimization. The use of materials such as hydroxyapatite (HA) and modern technologies continues to be developed to address these issues. Therefore, this study focuses on conducting a literature review of recent developments in dental implant materials and procedures. The method used was a descriptive analytical literature review of three relevant primary articles discussing HA/MWCNT synthesis, implant interaction with saliva, and immediate implant placement procedures. Findings from the first article demonstrated that the combination of HA with multiwalled carbon nanotubes (MWCNT) through electrophoretic deposition improved coating uniformity and corrosion resistance. The second article confirmed the safety of the implant material through artificial saliva analysis, which detected no harmful elements after corrosion. The third article demonstrated that immediate implant placement after extraction, with the support of bone graft and antibiotics, effectively maintained tissue structure and improved aesthetics. It was concluded that the selection of innovative materials such as HA/MWCNT and procedural approaches, such as immediate implant placement, significantly contribute to improving the clinical success, aesthetics, and safety of dental implants.
ABSTRAK
Penelitian ini dilatarbelakangi oleh peran krusial implan gigi sebagai solusi rehabilitasi kehilangan gigi, namun masih menghadapi tantangan terkait integrasi tulang, ketahanan material, dan optimalisasi prosedur. Penggunaan material seperti hidroksiapatit (HA) dan teknologi modern terus dikembangkan untuk mengatasi masalah ini. Oleh karena itu, penelitian ini berfokus untuk melakukan tinjauan literatur terhadap perkembangan terkini dalam material dan prosedur pemasangan implan gigi. Metode yang digunakan adalah literature review deskriptif analitis terhadap tiga artikel utama yang relevan, membahas sintesis HA/MWCNT, interaksi implan dengan saliva, dan prosedur pemasangan implan segera. Temuan dari artikel pertama menunjukkan bahwa kombinasi HA dengan multiwalled carbon nanotubes (MWCNT) melalui deposisi elektroforetik meningkatkan keseragaman lapisan dan ketahanan korosi. Artikel kedua mengonfirmasi keamanan material implan melalui analisis saliva buatan yang tidak mendeteksi unsur berbahaya pasca korosi. Artikel ketiga membuktikan bahwa pemasangan implan segera setelah pencabutan, dengan dukungan graft tulang dan antibiotik, efektif mempertahankan struktur jaringan dan meningkatkan estetika. Disimpulkan bahwa pemilihan material inovatif seperti HA/MWCNT dan pendekatan prosedural seperti pemasangan implan segera secara signifikan berkontribusi pada peningkatan keberhasilan klinis, estetika, dan keamanan implan gigi.
Downloads
References
Al-Shalawi, F. D. et al. (2023). Biomaterials As Implants In The Orthopedic Field For Regenerative Medicine: Metal Versus Synthetic Polymers. Polymers, 15(12), Article 2601. https://doi.org/10.3390/polym15122601
Andrew, J. J., & Dhakal, H. N. (2021). Sustainable Biobased Composites For Advanced Applications: Recent Trends And Future Opportunities – A Critical Review. Composites Part C Open Access, 7, Article 100220. https://doi.org/10.1016/j.jcomc.2021.100220
Bassi, F. et al. (2015). Surgical Treatment Of Peri-Implantitis: A 17-Year Follow-Up Clinical Case Report. Case Reports in Dentistry, 2015, Article 795943. https://doi.org/10.1155/2015/795943
Cooper, L. F., & Shirazi, S. (2021). Osseointegration—The Biological Reality Of Successful Dental Implant Therapy: A Narrative Review. Frontiers of Oral and Maxillofacial Medicine, 4, Article 39. https://doi.org/10.21037/fomm-21-77
Cruz, M. et al. (2022). Biomimetic Implant Surfaces And Their Role In Biological Integration—A Concise Review. Biomimetics, 7(2), Article 74. https://doi.org/10.3390/biomimetics7020074
Das, S. et al. (2019). Accentuated Osseointegration In Osteogenic Nanofibrous Coated Titanium Implants. Scientific Reports, 9(1), Article 17466. https://doi.org/10.1038/s41598-019-53884-x
Ghilini, F. et al. (2021). Multifunctional Titanium Surfaces For Orthopedic Implants: Antimicrobial Activity And Enhanced Osseointegration. ACS Applied Bio Materials, 4(8), 6451–6460. https://doi.org/10.1021/acsabm.1c00613
Halim, S. et al. (2025). Tinjauan Artikel Laporan Kasus Pertimbangan Pemasangan Implan Gigi Pada Pasien Lanjut Usia. CENDEKIA Jurnal Ilmu Pengetahuan, 5(2), 571–578. https://doi.org/10.51878/cendekia.v5i2.4744
Herrero?Climent, M. et al. (2020). Relevant Design Aspects To Improve The Stability Of Titanium Dental Implants. Materials, 13(8), Article 1910. https://doi.org/10.3390/ma13081910
Ibrahim, A. M. H., & Balog, M. (2023). Investigation Of The Electrochemical Behavior Of A Newly Designed TiMg Dental Implant. Journal of Materials Science, 59, 517–529. https://doi.org/10.1007/s10853-023-09199-4
Ichwana, D. L., & Arifin, M. (2021). Prosedur Pemasangan Implan Segera Pasca Pencabutan Gigi Anterior Disertai Pemasangan Mahkota Sementara. SONDE (Sound of Dentistry), 2(2), 142–152. https://doi.org/10.28932/sonde.v2i2.4172
Jindal, S. et al. (2020). 3D Printed Composite Materials For Craniofacial Implants: Current Concepts, Challenges And Future Directions. The International Journal of Advanced Manufacturing Technology, 112, 635–674. https://doi.org/10.1007/s00170-020-06397-1
Kale, P. et al. (2025). Osseointegration: Understanding The Biological Basis Of Implant Longevity- Narrative Review. IP International Journal of Periodontology and Implantology, 10(1), 3–8. https://doi.org/10.18231/j.ijpi.2025.002
Lovera-Prado, K. et al. (2023). Barbed Dental Ti6Al4V Alloy Screw: Design And Bench Testing. Materials, 16(6), Article 2228. https://doi.org/10.3390/ma16062228
Muharni, & Ulum, A. (2023). Potensi Hidroksiapatit Nano Pada Dental Implan. R.E.M. (Rekayasa Energi Manufaktur) Jurnal, 8(1), 87–92. https://doi.org/10.21070/rem.v8i1.1843
Novakov, T. (2010). Computational Analysis Of Micromachining Ti6Al4V Titanium Alloy [Doctoral dissertation, Purdue University]. Purdue University e-Pubs. https://docs.lib.purdue.edu/dissertations/9616
Park, J.-E. et al. (2019). Biocompatibility Characteristics Of Titanium Coated With Multi Walled Carbon Nanotubes—Hydroxyapatite Nanocomposites. Materials, 12(2), Article 224. https://doi.org/10.3390/ma12020224
Qiao, H. et al. (2019). Si, Sr, Ag Co-Doped Hydroxyapatite/TiO2 Coating: Enhancement Of Its Antibacterial Activity And Osteoinductivity. RSC Advances, 9(24), 13348–13359. https://doi.org/10.1039/c9ra01168d
Rodi?, P. et al. (2021). Degradation Of Sol-Gel Acrylic Coatings Based On Si And Zr Investigated Using Electrochemical Impedance, Infrared And X-Ray Photoelectron Spectroscopies. Frontiers in Materials, 8, Article 756447. https://doi.org/10.3389/fmats.2021.756447
Rogala-Wielgus, D. et al. (2023). Evaluation Of Adhesion Strength, Corrosion, And Biological Properties Of The MWCNT/TiO2 Coating Intended For Medical Applications. RSC Advances, 13(43), 30108–30119. https://doi.org/10.1039/d3ra05331h
Smeets, R., & Brandl, S. B. (2016). Impact Of Dental Implant Surface Modifications On Osseointegration. BioMed Research International, 2016, Article 6285620. https://doi.org/10.1155/2016/6285620
Sodnom-Ish, B. et al. (2023). A 10-Year Survival Rate Of Tapered Self-Tapping Bone-Level Implants From Medically Compromised Korean Patients At A Maxillofacial Surgical Unit. Maxillofacial Plastic and Reconstructive Surgery, 45(1), Article 29. https://doi.org/10.1186/s40902-023-00401-w
Syed, J. A. et al. (2017). Super-Hydrophobic Multilayer Coatings With Layer Number Tuned Swapping In Surface Wettability And Redox Catalytic Anti-Corrosion Application. Scientific Reports, 7(1), Article 4310. https://doi.org/10.1038/s41598-017-04651-3
Tanka, K., & Alshehri, F. A. (2023). Surgical Management Of Peri-Implantitis In Adjunction With BlueM Oxygen Therapy: A Case Report With 5-Years Follow-Up. International Journal of Community Medicine and Public Health, 10(11), 4435–4438. https://doi.org/10.18203/2394-6040.ijcmph20233261
Tetelepta, R. M. E. (2015). Pengaruh Penambahan Bahan Bioaktif Pada Implan Gigi Berdasarkan Pemeriksaan Histologi. [Unpublished manuscript].
Thakkar, K. et al. (2017). Threat To Implants: Peri-Implantitis: A Case Report. Journal of Dental Specialities, 5(2), 172–174. https://doi.org/10.18231/2348-9215.2017.037
Thukkaram, M. et al. (2020). Fabrication Of Microporous Coatings On Titanium Implants With Improved Mechanical, Antibacterial, And Cell-Interactive Properties. ACS Applied Materials & Interfaces, 12(27), 30155–30168. https://doi.org/10.1021/acsami.0c07234
Türk, S. et al. (2019). Biomimetic Synthesis Of Ag, Zn Or Co Doped HA And Coating Of Ag, Zn Or Co Doped HA/fMWCNT Composite On Functionalized Ti. Materials Science and Engineering C, 99, 986–999. https://doi.org/10.1016/j.msec.2019.02.025
Valmelina, E. A., & Pradana, P. (2024). Evaluating Acetone And Methanol For Electrophoretic Deposition Of SS 316L Coated With Hydroxyapatite/Multiwalled Carbon Nanotubes Dental Implants: A Focus On Corrosion Resistance. Jurnal Kimia Riset, 9(1), 78–89. https://doi.org/10.20473/jkr.v9i1.50654
Wu, S. C., & Hsu, H. C. (2016). Synthesis Of Hydroxyapatite From Eggshell Powders Through Ball Milling And Heat Treatment. Journal of Asian Ceramic Societies, 4(1), 85–90. https://doi.org/10.1016/j.jascer.2015.11.002
Zemtsova, E. G. et al. (2023). Creation Of A Composite Bioactive Coating With Antibacterial Effect Promising For Bone Implantation. Molecules, 28(3), Article 1416. https://doi.org/10.3390/molecules28031416
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 SCIENCE : Jurnal Inovasi Pendidikan Matematika dan IPA

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.













