MODEL MATEMATIKA SVEIQHR–SEI UNTUK PENYEBARAN PENYAKIT CACAR MONYET: INTEGRASI STRATEGI VAKSINASI DAN INTERAKSI MANUSIA–HEWAN
DOI:
https://doi.org/10.51878/science.v5i3.6834Keywords:
Monkeypox, Analisis Sensitivitas, RoAbstract
Monkeypox is a zoonotic disease with the potential to cause outbreaks in humans, especially in areas with close interaction between humans and rodents as reservoirs. The developed model involves two main populations, namely humans and rodents, and is a modification of the Bolaji model by adding a vaccination compartment to the human population. This research is a quantitative study based on deterministic mathematical modeling that aims to develop a monkeypox spread model using a compartmental approach. The structure of the human model consists of seven compartments: susceptible, vaccinated, exposed, infectious, isolated, treated, and recovered, while the animal population is divided into four compartments: susceptible, exposed, infectious, and recovered. The methods used include the formulation of a system of ordinary differential equations (ODEs) to describe population dynamics over time, stability analysis of disease-free and endemic equilibrium points, calculation of the basic reproduction number Ro, sensitivity analysis of key parameters using elasticity indices, and numerical simulations to evaluate the effectiveness of intervention strategies. The results show that parameters such as contact rate, isolation level, treatment, and early diagnosis significantly influence the Ro value. Although the vaccination parameter is not explicitly stated in the Ro formula, vaccination has been shown to significantly reduce the number of susceptible individuals through partial protection that depends on vaccine efficacy. Numerical simulations indicate that the presence of a vaccination compartment can reduce the overall number of infectious cases and play a significant role in curbing the spread of the disease. Therefore, combining vaccination with other interventions such as case isolation and contact reduction is an effective strategy for sustainable monkeypox control.
ABSTRAK
Cacar monyet (monkeypox) merupakan penyakit zoonosis yang berpotensi menimbulkan wabah pada manusia, terutama di wilayah dengan interaksi erat antara manusia dan hewan rodensia sebagai reservoir. Model yang dikembangkan melibatkan dua populasi utama, yaitu manusia dan hewan rodensia, dan merupakan modifikasi dari model Bolaji dengan menambahkan kompartemen vaksinasi pada populasi manusia. Penelitian ini merupakan studi kuantitatif berbasis pemodelan matematika deterministik yang bertujuan mengembangkan model penyebaran cacar monyet melalui pendekatan kompartemen. Struktur model manusia terdiri atas tujuh kompartemen: rentan, divaksinasi, terpapar, infeksius, terisolasi, dirawat, dan sembuh, sementara populasi hewan dibagi menjadi empat kompartemen: rentan, terpapar, infeksius, dan sembuh. Metode yang digunakan meliputi formulasi sistem persamaan diferensial biasa (ODE) untuk mendeskripsikan dinamika populasi terhadap waktu, analisis kestabilan titik kesetimbangan bebas penyakit dan endemik, perhitungan bilangan reproduksi dasar Ro?, analisis sensitivitas terhadap parameter-parameter kunci menggunakan indeks elastisitas, serta simulasi numerik untuk mengevaluasi efektivitas strategi intervensi. Hasil penelitian menunjukkan bahwa parameter seperti laju kontak, tingkat isolasi, perawatan, dan diagnosis dini sangat memengaruhi nilai Ro?. Meskipun parameter vaksinasi tidak secara eksplisit muncul dalam rumusan Ro?, vaksinasi terbukti secara signifikan mengurangi jumlah individu yang rentan melalui perlindungan parsial yang bergantung pada efikasi vaksin. Simulasi numerik menunjukkan bahwa keberadaan kompartemen vaksinasi dapat menurunkan jumlah kasus infeksius secara keseluruhan dan berperan penting dalam menahan laju penyebaran penyakit. Dengan demikian, penggabungan vaksinasi bersama intervensi lainnya seperti isolasi kasus dan pengurangan kontak menjadi strategi efektif untuk mengendalikan cacar monyet secara berkelanjutan
Downloads
References
Bhatter, S., et al. (2023). A new fractional mathematical model to study the impact of vaccination on COVID-19 outbreaks. Decision Analytics Journal, 6, 100156.
Bhunu, C. P., & Mushayabasa, S. (2011). Mathematical analysis of a model for the transmission of human monkeypox. Journal of Biological Systems, 19(2), 251–269. https://doi.org/10.1142/S0218339011003923
Bolaji, A. O., et al. (2024). A mathematical model of monkeypox transmission dynamics incorporating isolation, diagnosis, and hospitalization. Infectious Disease Modelling, 9, 30–48. https://doi.org/10.1016/j.idm.2024.01.002
Bunge, E. M., et al. (2022). The changing epidemiology of human monkeypox—A potential threat? A systematic review. PLoS Neglected Tropical Diseases, 16(2), e0010141.
Hutson, C. L., et al. (2013). Comparison of monkeypox virus clade virulence in animal models. Viruses, 5(10), 2765–2787. https://doi.org/10.3390/v5102765
Jose, S. A., et al. (2024). Computational dynamics of a fractional order model of chickenpox spread in Phuket province. Biomedical Signal Processing and Control, 91, 105994.
Kementerian Kesehatan Republik Indonesia. (2023). Laporan perkembangan kasus dan respons cacar monyet (Monkeypox) di Indonesia. Direktorat Jenderal Pencegahan dan Pengendalian Penyakit, Kemenkes RI.
Maria, E. T., et al. (2023). Behavioral change and declining monkeypox incidence among MSM in the Netherlands. Eurosurveillance, 28(1), 2300010. https://doi.org/10.2807/1560-7917.ES.2023.28.1.2300010
Maysaa, A., et al. (2022). Stability and sensitivity analysis of a monkeypox model using fractional differential equations with Mittag-Leffler kernel. Mathematics, 10(10), 1650. https://doi.org/10.3390/math10101650
Meyer, H., et al. (2017). Outbreaks of disease suspected of being due to human monkeypox virus infection in the Democratic Republic of Congo in 2001. The Journal of Infectious Diseases, 216(5), 529–536. https://doi.org/10.1093/infdis/jiz070
Peter, M., et al. (2021). A new fractional monkeypox model using Atangana–Baleanu–Caputo operator. Advances in Difference Equations, 2021(1), 363. https://doi.org/10.1186/s13662-021-03534-2
Rimoin, A. W., et al. (2010). Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proceedings of the National Academy of Sciences, 107(37), 16262–16267. https://doi.org/10.1073/pnas.1005769107
Samuel, A. A., & Joseph, A. Y. (2023). Mathematical modeling of monkeypox virus in Ghana using fractional derivatives. Results in Applied Mathematics, 21, 100344. https://doi.org/10.1016/j.rinam.2023.100344
TeWinkel, K. M. (2019). Global stability analysis of an SIR model with nonlinear incidence and vaccination. Nonlinear Analysis: Real World Applications, 46, 191–205. https://doi.org/10.1016/j.nonrwa.2018.08.004
World Health Organization. (2022, July 23). WHO Director-General declares the ongoing monkeypox outbreak a Public Health Emergency of International Concern. https://www.who.int/news/item/23-07-2022-who-director-general-declares-the-ongoing-monkeypox-outbreak-a-public-health-event-of-international-concern
Worldometer. (2022). United States population. https://www.worldometers.info/world-population/us-population/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 SCIENCE : Jurnal Inovasi Pendidikan Matematika dan IPA

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.













