STUDI PERBANDINGAN METODE KAPASITANSI DAN METODE PENGOLAHAN CITRA DIGITAL DALAM PENGUKURAN HAIRINESS PADA BENANG SPUN
DOI:
https://doi.org/10.51878/cendekia.v5i2.4703Keywords:
Bulu benang, Indeks Hairiness, Metode Kapasitansi, Metode Pengolahan Citra DigitalAbstract
The objective of this study is to determine the relationship between the capacitance method and the digital image processing method in measuring the hairiness index of yarn, as well as to evaluate the potential of digital image processing as an alternative method for testing spun yarn hairiness. This study utilizes three types of yarn with counts of Nec 12, Nec 16, and Nec 24. Hairiness measurement is conducted using two methods: the capacitance method, based on the SNI ISO 16549:2010 standard (Textiles – Yarn Evenness and Similar Properties), utilizing the Textechno Covatest instrument, and the digital image processing method, employing a CMOS Dino-Lite camera and Java-based software. The digital image processing procedure consists of several stages, including yarn image acquisition, background segmentation and free fiber feature extraction, image conversion to binary format, quantitative analysis, and Hairiness index (HI) calculation. The hairiness index results from both methods are compared using linear regression analysis to determine their correlation. The findings indicate that the capacitance method and the digital image processing method exhibit a very strong relationship, with a coefficient of determination (R²) of 90.23%. This result suggests that the digital image processing method has significant potential as an alternative for measuring spun yarn hairiness.
ABSTRAK
Tujuan penelitian ini adalah mengetahui hubungan antara metode kapasitansi dan metode pengolahan citra digital dalam pengukuran hairiness index pada benang serta mengevaluasi kemungkinan metode pengolahan citra digital sebagai alternatif pengujian hairiness benang spun. Pada penelitian ini, digunakan tiga jenis benang dengan nomor Nec 12, Nec 16, dan Nec 24. Pengukuran hairiness dilakukan dengan dua metode: metode kapasitansi berdasarkan standar SNI ISO 16549:2010 (Tekstil – Ketidakrataan Benang dan Sejenisnya) menggunakan alat Textechno Covatest, serta metode pengolahan citra digital dengan kamera CMOS Dino-Lite dan perangkat lunak berbasis pemrograman Java. Proses pengolahan citra digital dilakukan melalui beberapa tahap, yaitu akuisisi citra benang, segmentasi latar belakang dan ekstraksi fitur serat bebas, konversi citra ke dalam format biner dan analisis kuantitatif dan perhitungan Hairiness index (HI). Hasil hairiness index dari kedua metode dibandingkan dengan analisis regresi linier untuk mengetahui hubungan antara keduanya. Hasil penelitian menunjukkan bahwa metode kapasitansi dan metode pengolahan citra digital memiliki hubungan yang sangat kuat dengan nilai koefisien determinasi (R²) sebesar 90,23%. Nilai ini menunjukkan bahwa metode pengolahan citra digital memiliki potensi sebagai alternatif dalam pengukuran hairiness benang spun.
Downloads
References
Afifuddin, M., et al. (2024). Analisis penyebab tingginya angka hairiness pada benang Cd 40’s di mesin ring spinning perusahaan pembuatan benang PT XYZ. Performa: Media Ilmiah Teknik Industri, 20(1), 1–5.
Chi, K. L., et al. (2012). Study on yarn evenness detection digital image processing. Textile Research, 33(12), 91–94.
Deng, Z., et al. (2024). An algorithm for cross-fiber separation in yarn hairiness image processing. Visual Computer, 40, 3591–3599. https://doi.org/10.1007/s00371-023-03053-z
Du, G., et al. (2017). Objective evaluation of yarn hairiness using digital image processing and machine learning. Measurement, 103, 25–32. https://doi.org/10.1016/j.measurement.2017.02.030
Fang, H., & Xin, B. (2015). Research on a new type of yarn hairiness image feature recognition algorithm. Journal of Hebei University of Science and Technology [Nama Jurnal Asumsi], 36(1), 63–72.
Ghozali, I. (2016). Aplikasi analisis multivariate dengan program IBM SPSS 23. Badan Penerbit Universitas Diponegoro.
Giyanto, G. (2023). Pengaruh tension benang dan kecepatan penggulungan benang ulang (rewinding) terhadap bulu (hairiness) benang kapas carded Ne 30/1. Jurnal Ilmiah Fakultas Teknik, 3(2), 176–187.
Harianto, D., et al. (2024). Perbandingan kinerja yarn guide tipe pig tail dan snail wire dalam kualitas hairiness benang ring spinning frame. Jurnal Tekstil: Jurnal Keilmuan dan Aplikasi Bidang Tekstil dan Manajemen Industri, 7(2), 111–119.
Huang, X., et al. (2021). A relative hairiness index for evaluating the securities of fiber ends in staple yarns and its application. Textile Research Journal, 91(19-20), 2455–2466. https://doi.org/10.1177/00405175211035136
Jeddi, A. A., et al. (2012). A study on the effect of yarn linear density and twist factor on results obtained from different yarn hairiness testers. Journal of Engineered Fibers and Fabrics, 7(4), 80–86. https://doi.org/10.1177/155892501200700411
Li, X. L. (2003). Effect of yarn hairiness on fabric properties. Cotton Textile Technology, 31(4), 63–64.
Lord, P. R. (2003). Handbook of yarn production: Technology, science and economics. Woodhead Publishing Limited.
Lu, M., & Liu, Y. P. (2009). Hairiness binary image processing and matlab realization. Shandong Textile Science & Technology, 50(2), 37–39
Malik, R., et al. (2020). Comparative analysis of yarn hairiness measurement using Uster Tester 5 and image analysis technique. Journal of Natural Fibers, 17(8), 1150–1160. https://doi.org/10.1080/15440478.2018.1551978
Murti, W., et al. (2017). Pemodelan dan validasi nilai sudut antihan benang secara teori dan pengolahan citra digital. 2nd Indonesian Textile Conference.. (ISSN: 2356-5407).
Murti, W., et al. (2024). Pengembangan sistema pengukur pakaian berbasis pengolahan citra digital. In Prosiding SNAST (pp. E259–E268).
Pan, Z. J. (2005). Modern fiber materials testing technology. China Textile Press. [Catatan: Publikasi sebelum 2010].
Roy, S., et al. (2014). Yarn hairiness evaluation using image processing. International Conference on Control, Instrumentation, Energy & Communication (pp. 588–592).
Sun, Y. Y., et al. (2013). Yarn hairiness testing based on digital image processing. Textile Research, 34(6), 102–106.
Telli, A. (2023). The evaluation of uster hairiness results with an image analysis approach. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(4), 899–905. https://doi.org/10.21605/cukurovaumfd.1410206
Wang, W., et al. (2019). Objective evaluation on yarn hairiness detection based on multi-view imaging and processing method. Measurement, 148, Article 106905. https://doi.org/10.1016/j.measurement.2019.106905
Wijayono, A., & Murti, W. (2024). Study of measuring the cover factor of woven fabrics using image processing techniques. Sainteks: Jurnal Sain dan Teknik, 6(2), 245–255.
Wijayono, A., et al. (2017). Pemodelan dan validasi nilai konstanta diameter benang secara teori dan pengolahan citra digital. 2nd Indonesian Textile Conference. (ISSN: 2356-5407).
Xu, B., et al. (2010). Measurement of yarn hairiness based on digital image processing. Textile Research Journal, 80(7), 607–613. https://doi.org/10.1177/0040517509346444
Yao, M., et al. (2008). Evaluating fabric fuzziness using laser range sensing. Optical Engineering, 47(1), Article 013603.
Zhang, G., & Xin, B. (2016). An overview of the application of image processing technology for yarn hairiness evaluation. Research Journal of Textile and Apparel, 20(1), 24–36. https://doi.org/10.1108/RJTA-09-2015-0027
Zhao, L. Y. (2014). Development and application of digital image processing technology intelligent detection system based yarn.. Jilin University.
Zheng, Y., et al. (2015). An improved image processing method for characterizing yarn hairiness based on hair morphology. Textile Research Journal, 85(10), 1045–1055. https://doi.org/10.1177/0040517514558571















