PENERAPAN CENTER DISPLACEMENT FUZZY K-MEANS UNTUK PEMETAAN KEMISKINAN DI PULAU JAWA

Authors

  • Fitri Hidayah Sundawati Politeknik Manufaktur Bandung

DOI:

https://doi.org/10.51878/knowledge.v5i3.6857

Keywords:

Kemiskinan, Center Displacement Fuzzy K-Means, Tipologi wilayah

Abstract

Poverty in Java Island remains a complex structural challenge despite a downward trend, with significant disparities between districts/cities. This study aims to map regional typologies based on poverty indicators, thus carrying out quantitative research, with the help of the Center Displacement Fuzzy K-Means (CDFKM) algorithm. This method was chosen because it is able to handle overlapping cluster membership with better computational efficiency than conventional Fuzzy K-Means. Secondary data were sourced from BPS (2024) for 119 districts/cities located in six provinces of Java Island. These include poverty levels, education, health, access to clean water, housing density, and household expenditure patterns. The validity of the clustering results was evaluated using the Silhouette Coefficient. The results indicate an optimal configuration of two clusters. The first cluster reflects urban areas with relatively low poverty but facing vulnerabilities in housing density, food expenditure burden, and limited health insurance coverage. The second cluster represents rural areas with higher poverty levels, limited access to clean water, and poorer environmental health conditions. These findings suggest the importance of data-driven approaches in policy formulation, with interventions tailored to the specific vulnerability profiles of each region in Java.

ABSTRAK
Kemiskinan di Pulau Jawa masih menjadi tantangan struktural yang kompleks meskipun ada tren penurunan dengan disparitas antar kabupaten/kota yang signifikan. Tujuan dari penelitian ini adalah memetakan tipologi wilayah berdasarkan indikator kemiskinan melalui pendekatan kuantitatif menggunakan algoritma Center Displacement Fuzzy K-Means (CDFKM). Metode tersebut dipilih karena mampu menangani tumpang tindih keanggotaan klaster dengan efisiensi komputasi yang lebih baik dibandingkan Fuzzy K-Means konvensional. Data sekunder bersumber dari BPS (2024) pada 119 kabupaten/kota yang terletak di enam provinsi Pulau Jawa. Variabel dalam penelitian ini meliputi tingkat kemiskinan, pendidikan, kesehatan, akses air bersih, kepadatan hunian, serta pola pengeluaran rumah tangga. Validitas dari klaster hasil pengelompokkan dievaluasi menggunakan Koefisien Silhouette. Hasil penelitian menunjukkan konfigurasi optimal pada dua klaster. Klaster pertama mencerminkan wilayah urban dengan kemiskinan relatif rendah namun menghadapi kerentanan pada kepadatan hunian, beban pengeluaran pangan, dan keterbatasan jaminan kesehatan. Klaster kedua merepresentasikan wilayah rural dengan tingkat kemiskinan lebih tinggi, akses air bersih yang terbatas, serta beban kesehatan lingkungan yang lebih buruk. Temuan ini menegaskan pentingnya pendekatan berbasis data dalam perumusan kebijakan, dengan intervensi yang disesuaikan terhadap profil kerentanan spesifik tiap wilayah di Pulau Jawa.

Downloads

Download data is not yet available.

References

Amelia, M., et al. (2025). Penerapan metode K-Means clustering dalam pemetaan kemiskinan kabupaten/kota di Indonesia untuk perencanaan kebijakan yang tepat. Jurnal Informatika dan Teknik Elektro Terapan (JITET), 13(2), 437–444. https://doi.org/10.23960/jitet.v13i2.6231

Chang, C.-T., et al. (2011). A fuzzy K-means clustering algorithm using cluster center displacement. Journal of Information Science and Engineering, 27, 995–1009.

Daniel, D., et al. (2021). A system dynamics model of the Community Based Rural Drinking Water Supply Program (PAMSIMAS) in Indonesia. Water, 13(4), 507. https://doi.org/10.3390/w13040507

Daniel, D., et al. (2021). Interaction of factors influencing the sustainability of Water, Sanitation, and Hygiene (WASH) services in rural Indonesia: Evidence from small surveys of WASH related stakeholders in Indonesia. Water, 13(3), 314. https://doi.org/10.3390/w13030314

Daniel, D., et al. (2022). The effect of community contribution on the functionality of rural water supply programs in Indonesia. Groundwater for Sustainable Development, 19, Article 100822. https://doi.org/10.1016/j.gsd.2022.100822

Eliezer, W. R. (2022). Pemodelan faktor-faktor yang mempengaruhi tingkat kemiskinan di Pulau Jawa dengan mempertimbangkan efek regional tahun 2022. Indonesian Journal of Applied Statistics, 5(1), 67–78. https://doi.org/10.13057/ijas.v7i2.87342

Hoiroh, H., et al. (2024). Analisis kemiskinan Jawa Timur. Jurnal Perencanaan Wilayah dan Pembangunan, 2(1), 40–48. https://jpwp.jurnal.unej.ac.id/index.php/JPWP/article/view/47928

Kusuma, D. A., & Rachmawati, R. (2021). Analisis pengelompokan provinsi di Indonesia berdasarkan indikator ketenagakerjaan menggunakan K-Means dan Silhouette Coefficient. Jurnal Statistika dan Aplikasinya, 5(2), 150–160. https://doi.org/10.26740/jsa.v5n2.p150-160

Mayasari, S. N. (2023). Implementasi K-Means cluster analysis untuk mengelompokkan kabupaten/kota berdasarkan data kemiskinan di Provinsi Jawa Tengah. Konstelasi: Konvergensi Teknologi dan Sistem Informasi, 3(2), 324–335. https://doi.org/10.24002/konstelasi.v3i2.7200

Muta’ali, L., et al. (2024). Inter-regional poverty disparities in Java, Indonesia: An analysis of key influencing factors (2010–2020). Planning Malaysia: Journal of the Malaysian Institute of Planners, 22(2), 45–62. https://doi.org/10.21837/pm.v22i31.1483

Muttaqien, M., et al. (2021). Why did informal sector workers stop paying for health insurance in Indonesia? Exploring enrollees’ ability and willingness to pay. PLOS ONE. https://doi.org/10.1371/journal.pone.0252708

Niswatin, K., et al. (2022). Clustering of districts and cities in Indonesia based on poverty indicators using the K-Means method. ICMS 2021 Proceedings.

Noerhidajati, S., et al. (2021). Household financial vulnerability in Indonesia: Measurement and determinants. Economic Modelling, 96, 433–444. https://doi.org/10.1016/j.econmod.2020.03.028

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7

Tacharri, C. (2025). Strategic clustering of poverty areas in Central Java using K-Means and Silhouette Evaluation. Sinkron: Journal of Regional Studies. https://doi.org/10.33395/sinkron.v9i2.14734

Triscowati, D. W., et al. (2019). Spatio-temporal poverty in Java Island using geographically and temporally weighted regression. Journal of Physics: Conference Series, 1211(1), Article 012093. https://doi.org/10.1088/1742-6596/1211/1/012093

Wongoutong, C. (2024). The impact of neglecting feature scaling in k means clustering. PLOS ONE. https://doi.org/10.1371/journal.pone.0310839

Xu, J. (2016). Robust and sparse fuzzy K means clustering. Proceedings of IJCAI, 317–323.

Zenklinov, A. P., & Arifin, A. (2025). The Fuzzy-Possibilistic Product Partition c-Means (FPPPCM) algorithm for clustering the welfare levels of regencies in East Java. Jurnal Matematika, Statistika dan Komputasi, 21(3), 754–762. https://doi.org/10.20956/j.v21i3.43339

Downloads

Published

2025-09-16

How to Cite

Sundawati, F. H. (2025). PENERAPAN CENTER DISPLACEMENT FUZZY K-MEANS UNTUK PEMETAAN KEMISKINAN DI PULAU JAWA. KNOWLEDGE: Jurnal Inovasi Hasil Penelitian Dan Pengembangan, 5(3), 915-924. https://doi.org/10.51878/knowledge.v5i3.6857

Issue

Section

Articles