ANALISIS SPASIAL KERAWANAN KEKERINGAN MENGGUNAKAN WEIGHTED OVERLAY DI KABUPATEN GOWA, SULAWESI SELATAN

Authors

  • Nurul Ilmi Rasjusti Universitas Negeri Makassar
  • Nasiah Badwi
  • Wangi Suci Ananda

DOI:

https://doi.org/10.51878/cendekia.v6i2.9105

Keywords:

Kekeringan, Weighted Overlay, Analisis Spasial

Abstract

ABSTRACT

Drought is a hydrometeorological disaster that has a major impact on water availability and agricultural sustainability. This study maps drought vulnerability levels in Gowa Regency using a Geographic Information System–based weighted overlay method with seven parameters, namely rainfall, soil type, slope, elevation, distance from rivers, land use, and vegetation density, which were analyzed through weighting techniques and equal interval classification in ArcGIS 10.3. The results show that the study area is divided into five vulnerability classes: very low (6.10%), low (33.48%), moderate (39.31%), high (17.76%), and very high (3.35%), with spatial patterns varying across districts. Most areas fall within the low to moderate vulnerability categories, while high vulnerability is mainly found in wetland and dryland agricultural zones that experience high pressure on water use. These findings indicate that the weighted overlay–based geospatial approach is effective in depicting the spatial distribution of drought vulnerability and can serve as a basis for water resource management planning, risk mitigation, and strengthening food security in Gowa Regency.

ABSTRAK

Kekeringan merupakan bencana hidrometeorologi yang berdampak besar terhadap ketersediaan air dan keberlanjutan pertanian. Penelitian ini memetakan tingkat kerawanan kekeringan di Kabupaten Gowa menggunakan metode weighted overlay berbasis Sistem Informasi Geografis dengan tujuh parameter, yaitu curah hujan, jenis tanah, kemiringan lereng, ketinggian, jarak dari sungai, penggunaan lahan, dan kerapatan vegetasi yang dianalisis melalui teknik pembobotan dan klasifikasi equal interval pada ArcGIS 10.3. Hasil analisis menunjukkan bahwa wilayah penelitian terbagi ke dalam lima kelas kerawanan, yaitu sangat rendah (6,10%), rendah (33,48%), sedang (39,31%), tinggi (17,76%), dan sangat tinggi (3,35%) dengan pola spasial yang bervariasi antar kecamatan. Sebagian besar wilayah berada pada kategori rendah hingga sedang, sementara tingkat kerawanan tinggi terutama ditemukan pada kawasan pertanian lahan basah dan lahan kering yang memiliki tekanan penggunaan air yang besar. Temuan ini menunjukkan bahwa pendekatan geospasial berbasis weighted overlay efektif untuk menggambarkan distribusi kerawanan kekeringan dan dapat dimanfaatkan sebagai dasar perencanaan pengelolaan sumber daya air, mitigasi risiko, dan penguatan ketahanan pangan di Kabupaten Gowa.

Downloads

Download data is not yet available.

References

Ahmad, I., Ul Haq, I., Ahmad, M., Gul, I., Khan, M., Khushnuma, K., Ullah, U., Ur Rehman, M., & Metwaly, M. (2025). Groundwater estimation and determination of its probable recharge source in the Lower Swat District, Khyber Pakhtunkhwa, Pakistan, using analytical data and multiple machine learning models. Frontiers in Environmental Science, 13, Article 1598307. https://doi.org/10.3389/fenvs.2025.1598307

Aprilia, A., Harisuseno, D., & Yuliani, E. (2025). Proyeksi kekeringan meteorologi berdasarkan skenario perubahan iklim RCP 4.5 pada DAS Grindulu. Jurnal Teknologi dan Rekayasa Sumber Daya Air, 5(2), 888–901. https://doi.org/10.21776/ub.jtresda.2025.005.02.084

Avia, L. Q., Yulihastin, E., Izzaturrahim, M. H., Muharsyah, R., Satyawardhana, H., Sofiati, I., Nurfindarti, E., & Gammamerdianti, A. (2023). The spatial distribution of a comprehensive drought risk index in Java, Indonesia. Kuwait Journal of Science, 50(4), 753–760. https://doi.org/10.1016/j.kjs.2023.02.031

Badan Nasional Penanggulangan Bencana. (2024). Buku Data Bencana Indonesia Tahun 2024. Pusat Data, Informasi dan Komunikasi Kebencanaan, BNPB. https://www.bnpb.go.id/buku/buku-data-bencana-indonesia-tahun-2024

Cartwright, J., Saatchi, S., Yang, Y., & Kwon, Y. (2020). Topographic, soil, and climate drivers of drought sensitivity in forests and shrublands of the Pacific Northwest, USA. Scientific Reports, 10(1), 17650. https://doi.org/10.1038/s41598-020-75273-5

Faisol, A., & Budiyono, B. (2023). Comparison between Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) methods to identify meteorological drought in West Papua. Agritechnology, 5(2), 74–88. https://journal.fateta.unipa.ac.id/index.php/agritechnology/article/view/89

Hoque, M. A. A., Pradhan, B., & Ahmed, N. (2020). Assessing drought vulnerability using geospatial techniques in northwestern part of Bangladesh. Science of the Total Environment, 705, 135957. https://doi.org/10.1016/j.scitotenv.2019.135957

Ikhwali, M. F., Rau, M. I., Benazir, Pawattana, C., & Yahya, H. (2023). Evaluation of flood and drought events using AR5 climate change scenarios in Indonesia. Journal of the Civil Engineering Forum, 9(1), 37–46. https://doi.org/10.22146/jcef.4721

Kadir, S., Ridwan, I., Nurlina, N., Faisol, H., Badaruddin, B., Yarnie, N. S., & Pratiwi, Y. E. (2022). Infiltrasi pada berbagai tutupan lahan DAS Tabunio dan Maluka, Provinsi Kalimantan Selatan. Jurnal Hutan Tropis, 10(3). https://doi.org/10.20527/jht.v10i3.14976

Khadka, D., Babel, M. S., Tingsanchali, T., Penny, J., Djordjevic, S., Abatan, A. A., & Giardino, A. (2024). Evaluating the impacts of climate change and land-use change on future droughts in northeast Thailand. Scientific Reports, 14(1), 9746. https://doi.org/10.1038/s41598-024-59113-4

Kukuntod, N., & Wijitkosum, S. (2025). Escalating drought vulnerability driven by land use change: Insights from a GIS-based CA-Markov and multi-criteria assessment of future scenarios in the Lam Ta Kong Watershed. Earth Systems and Environment, 1–18. https://doi.org/10.1007/s41748-025-00882-x

Lasaiba, M. (2023). Analisis multikriteria berbasis Sistem Informasi Geografis (SIG) terhadap bahaya dan risiko banjir di Kecamatan Sirimau Kota Ambon. Jurnal Geosains dan Remote Sensing, 4(2), 77–90. https://doi.org/10.23960/jgrs.ft.unila.146

Oktaria, K. (2016). Hubungan kemampuan tanah memegang air dengan penggunaan lahan di DAS Cipunagara. https://repository.ipb.ac.id/handle/123456789/85145

Pualilin, Y., Tjoneng, A., & Abdullah, A. (2019). Pemetaan zonasi daerah rawan kebakaran hutan dan lahan di Kabupaten Gowa. AGROTEK: Jurnal Ilmiah Ilmu Pertanian, 3(1). https://doi.org/10.33096/agr.v3i1.75

Rahardjo, A. P., Duhita, A. D. P., & Hairani, A. (2021). The effect of slope on the infiltration capacity and erosion of Mount Merapi slope materials. Journal of the Civil Engineering Forum, 7(1), 83–96. https://doi.org/10.22146/jcef.58350

Sania, A., Ruhiat, Y., & Denny, Y. R. (2025). Mapping drought prone areas using the weight overlay method in Serang Regency. ORBITA: Jurnal Pendidikan dan Ilmu Fisika, 11(1), 12–21. https://doi.org/10.31764/orbita.v11i1.30326

Siddik, S., Tulip, S. S., Rahman, A., Islam, N., Haghighi, A. T., & Mustafa, S. M. D. (2022). The impact of land use and land cover change on groundwater recharge in northwestern Bangladesh. Journal of Environmental Management, 315, 115130. https://doi.org/10.1016/j.jenvman.2022.115130

Siswanto, S., Wardani, K. K., Purbantoro, B., Rustanto, A., Zulkarnain, F., Anggraheni, E., Dewanti, R., Nurlambang, T., & Dimyati, M. (2022). Satellite-based meteorological drought indicator to support food security in Java Island. PLOS ONE, 17(6), e0260982. https://doi.org/10.1371/journal.pone.0260982

Situmeang, D. B. V., Rahim, S., & Dunggio, I. (2025). The relationship of soil types to the dynamics of groundwater availability for rice (Oryza sativa L.) and corn (Zea mays L.) plants in Pohuwato Regency. Jurnal Agronomi Tanaman Tropika (JUATIKA), 7(2), 602–607. https://doi.org/10.36378/juatika.v7i2.4430

Sunusi, N., & Auliana, N. H. (2025). Assessing SPI and SPEI for drought forecasting through the power law process: A case study in South Sulawesi, Indonesia. MethodsX, 14, 103235. https://doi.org/10.1016/j.mex.2025.103235

Suraeni. (2022). Analisis tingkat kekeringan dan arahan mitigasi di Daerah Aliran Sungai Jeneberang Hulu [Tesis, Universitas Hasanuddin]. https://repository.unhas.ac.id/id/eprint/14159/2/M012191033%201-2.pdf

Utami, N. A., Sujiono, E. H., & Palloan, P. (2020). Analisis tingkat kekeringan meteorologis di wilayah Sulawesi Selatan menggunakan metode Indeks Presipitasi Terstandarisasi (SPI). Dalam Prosiding Seminar Nasional Fisika (hlm. 114–117). Universitas Negeri Makassar. https://ojs.unm.ac.id/semnasfisika/article/view/15477/11447

Wang, Q., Yang, X., Qu, Y., Qiu, H., Wu, Y., Qi, J., Song, H., Chen, Y., Chu, H., & Zeng, J. (2025). Global climate change exacerbates socioeconomic drought severity across vegetation zones during 1901–2018. International Journal of Disaster Risk Science, 16(2), 291–306. https://doi.org/10.1007/s13753-025-00631-8

Ware, Y., & Somantri, L. (2024). Analysis of drought disaster potential based on remote sensing and geographic information systems (case study: North Central Timor Regency). Sumatra Journal of Disaster, Geography and Geography Education, 8(1), 87–96. https://doi.org/10.24036/sjdgge.v8i1.602

Wijitkosum, S. (2025). Integrated spatial analysis of drought risk factors using agglomerative hierarchical clustering and correlation. Environmental Advances, 100646. https://doi.org/10.1016/j.envadv.2025.100646

Xiao, L., Guo, C., Zheng, C., Lu, Z., Khan, M. A., Zhou, J., & Wu, X. (2025). Dense vegetation as a natural buffer: Mitigating and decelerating drought propagation. Journal of Environmental Management, 389, 126027. https://doi.org/10.1016/j.jenvman.2025.126027

Downloads

Published

2026-02-03

How to Cite

Rasjusti, N. I., Badwi, N., & Ananda, W. S. (2026). ANALISIS SPASIAL KERAWANAN KEKERINGAN MENGGUNAKAN WEIGHTED OVERLAY DI KABUPATEN GOWA, SULAWESI SELATAN. CENDEKIA: Jurnal Ilmu Pengetahuan , 6(2), 579-589. https://doi.org/10.51878/cendekia.v6i2.9105

Issue

Section

Articles